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TWO-DIMENSIONAL QUASI-STATIONARY 
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Abstract-An analytical solution is developed for the above problem with surface boundary conditions 
of distributed heat flux and convective loss. The case of a square-pulse heat-source on one surface with 
convective losses on both surfaces is considered in detail; temperature distributions are presented for a 
limited number of examples and an approximate solution ‘is derived. The conduction/convection 
parameter, x = u/(VI) is shown to provide criteria for neglecting energy transport due to conduction or 
convection in the direction of motion. For x < @Ol only convec ion is important. For 0.01 < 1( < 10 both 

conduction and convection are important. For 10 Q ! only conduction is important. 

NOMENCLATURE 

reference length; 
Biot number; 

specific heat [J/kg deg] ; 
particle derivative defined in equation (14); 
function defined in equation (37); 
function defined in equation (31); 

convective heat-transfer coefficient, 

[W/m2 degl; 
imaginary number, J - 1; 
integral; 

thermal conductivity [W/mdeg]; 
kernel of integral transform; 

length of heat zone [ml; 
constant defined by equations (62-63); 
indexing variable; 

large integer defined by equation (47); 
dimensionless heat flux, equation (17); 
heat flux [W/m21 ; 
time [s]; 

temperature [deg]; 
velocity [m/s]; 
part thickness [ml; 
coordinate parallel to direction of 
motion [ml; 
coordinate normal to direction of 
motion [ml. 

Greek symbols 

a, thermal diffusivity [m’/s]; 

B> Fourier transform variable, equation (27); 

*Present address: Western Electric Co., Northern Illinois 
Works, Lisle, Ill., U.S.A. 

partial sum, equation (46); 
arbitrary small number; 
dimensionless coordinate normal to direction 

of motion, equation (7); 
dimensionless coordinate parallel to direction 
of motion, equation (6); 
dummy variable; 
heat storage parameter, equation (61); 

eigenvalue, equation (23); 
Fourier number or dimensionless time, 

equation (8); 
irrational number; 
density [kg/m3]; 
dimensionless temperature, equation (5); 
dimensionless temperature in approximate 
solutions; 

renormalized dimensionless temperature, 
equation (64); 

conduction/convection parameter, 
equation (12); 
dimensionless velocity, equation (9). 

Subscripts 

0, surroundings; 

1, lower surface, [ = 0; 

2, upper surface, [ = 1; 

a, average; 

c, characteristic; 

1, indexing integer; 
max, maximum; 

n, indexing integer; 

x, x direction; 

Y, y direction. 
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Superscripts 
_ 

finite Fourier integral transform, 
equation (20); 
dummy variable; 
Fourier integral transform, equation (27). 

INTRODUCTION 

THE PRESENT work considers a body moving at a 

constant velocity relative to a steady heat source. If 
the body is of infinite extent in the direction of motion 
(i.e. all surfaces are parallel to the direction of motion), 
then a steady state temperature distribution will result 
when viewed in a coordinate system fixed to the heat 
source. This class of problems has been denoted quasi- 
stationary heat conduction [l] and has been studied 
by a number of investigators [l-8]. The engineering 
applications for these solutions are primarily in process 

engineering and include welding [ 1,3], continuous 
extrusion [ 11, continuous quenching [ 11, lathe turning 
[3], grinding [5,8], laser scribing, wave soldering, and 
other conveyorized thermal processes. 

Rosenthal, in his excellent paper [I], surveyed prior 

work and presented a number of new solutions to 
quasi-stationary problems. These solutions included 

both singular and finite sources and infinite, semi- 
infinite, finite, and thin bodies. In particular he con- 
sidered the temperature distribution in an insulated 
body of finite thickness (“slab”) due to a square-pulse 

heat source. 
Carslaw and Jaeger [2] summarized the solutions 

in the literature through 1958. These solutions included 
the insulated semi-infinite body with line and square- 
pulse heat-sources, thin body with line source and 
convective losses, and the slab problem of Rosenthal 

PI. 
Watts [4] discussed the quasi-steady temperature 

distribution in solid and hollow cylinders subjected to 
ring heat sources. He included surface heat loss due to 
convection. DesRusseaux and Zerkle [S] presented the 
semi-infinite body with square-pulse source and surface 

losses. 
Crisp [8] in his thesis considered a number of moving 

bodies of finite length. Because of the finite length, 
the solution was transient rather than quasi-stationary. 
His solutions included the insulated finite slab subject 
to a square-pulse heat source. Other transient solutions 
for bodies of finite length are discussed in Carslaw 
and Jaeger ([2], pp. 3877391). Cobble [9] considered 
a thin finite body subject to a discretely moving point 
source, and he included surface losses in his analysis. 

References [6] and [7] considered a special sub-class 
of the quasi-stationary problem. Both references 
assumed that the part velocity was sufficiently great 
that thermal conduction in the direction of motion 

was negligible compared to thermal convection due to 
part motion. Ling and Yang [6] considered the in- 
sulated semi-infinite body with distributed surface 
heating. Both papers presented limited justification for 

neglecting conduction. 
The present paper determines the quasi-steady tem- 

perature distribution in an infinite moving slab sub- 

jected to distributed heat sources and convective losses 
on both surfaces. The paper considers in detail the 
case of a square-pulse heat-source on one surface with 

convective losses on both surfaces. 
The motivation for the paper was to determine 

criteria for neglecting conduction and convection in 
the direction of motion. Such criteria permit the reduc- 
tion of the two-dimensional quasi-stationary problem 
to transient one-dimensional conduction if conduction 

is negligible and to steady-state two-dimensional con- 
duction if convection is negligible. These reductions 
permit solution of many quasi-stationary problems by 
utilizing the numerous solutions available in traditional 

references [2]. 
In the present work, appropriate dimensionless vari- 

ables are chosen and an analytical solution is obtained 

using Fourier transforms. The limiting form of the 
solution for negligible conduction in the traversing 
direction is presented. The general solution is then 

reduced to the square-pulse heat-source problem. An 
approximate solution is developed for this problem. 

The results of the approximate solution suggest modi- 
fied dimensionless parameters which reduce the num- 
ber of significant parameters. Graphical temperature 
distributions calculated from the exact solution are 
presented for a limited number ofcases. General criteria 
are presented for neglecting conduction and convection 

in the direction of motion, and the range of validity of 
the approximate solution is determined. 

MODEL 

Figure 1 illustrates the geometry of the system. The 
heated part is of finite thickness, W, and infinite length. 

It moves with velocity, V, in the positive x direction. 

The top and bottom surfaces are heated by arbitrary 
heat fluxes, q:(x), and are also convectively cooled. The 
thermal properties are temperature independent, but 

L V 

11 
x 

91’(x) 
“1 h, hl 

FIG. 1. Heat-transfer model. 
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the part is assumed orthotropic with different thermal 
conductivity in the x and Y direction. The mathematical 
model for the temperature T is: 

Differential equation 

(1) 

Boundary conditions 

k,$-h,(T-7+-q;(x); y=O,-a3~x~a3 (2) 

k,E+h,(T-T,)=q’;(x); Y=w,-a3~x~co 
8Y 

(3) 

--+O,T+T,; x’-++co 
8X 

0 < y s w. (4) 

Defining the following dimensionless parameters: 

~ = (T- T,)k, 
q;w ’ 

where q:( is a characteristic heat flux; (5) 

r) = x where 1 is a characteristic 
1’ length in the x direction; (6) 

i = y/w; (7) 

r = v where uy = k,jpc; 
wz ’ 

(8) 

(9) 

B1 = hlw/k,; (10) 

B2 = h,w/k,; (11) 

x = G/W), where c(, = k,lpc; (12) 

and substituting into the differential equations yields 

(13) 

The particle derivative, Dq%/Dz, in an Eulerian co- 
ordinate system (a system fixed in space) is 

D$h’i, 5) w?, i, T) a$(% i, 2) drl ~-++_-_. 
DZ aT &j dt 

(14) 

From equation (9) 

For a part moving at constant velocity, $, ad(q, i, T)/aT 
will be zero, and there will be a quasi-stationary 
temperature distribution. Thus, for constant velocity 
the particle derivative reduces to only the convective 
term r,G$/@ and the differential equation becomes 

+$-$)+$= 0. (16) 

The transformed boundary conditions are 

q’;(x) $+B2Q =-s 
4: 

q&d; i=l,-co<q<m (18) 

The variable 4 is the dimensionless temperature 
variable; it is normalized using a characteristic heat 
flux in the y direction. r) and < are the dimensionless 
coordinate variables in the x and y directions, respect- 
ively; T is the dimensionless time or Fourier number; 
it is defined in terms of a characteristic time for diffusion 
in the y direction. $ is the dimensionless velocity and 
chosen to be dq/dr to correspond to the definition of 
dimensional velocity, I/ = dx/dt. B1 and B2 are the 
Biot numbers for the bottom and top surfaces, respect- 
ively. 1 is the ratio of conduction of energy to con- 
vection of energy in the x direction; this interpretation 
of x is most clearly seen by observing the term in 
parenthesis in equation (16). x is the parameter multi- 
plying the conduction term in the r) direction d24/ar12. 
If x -+ 0, it implies that this conduction term is negligible 
compared to the convection term @/a?; if x is of order 
one, it implies that both terms are of equal importance. 
If x + cc it implies that convection is not important. 
While the definition of x resembles a reciprocal Peclet 
number, it is preferable to make a distinction just as a 
Biot number is differentiated from a Nusselt number. 

EXACT SOLUTION 

The solution to the above model is obtained by first 
applying a finite Fourier integral transform in the [ 
direction followed by a Fourier integral transform in 
the r~ direction. The use of transformations to solve the 
problem is dictated by the non-homogeneous boundary 
conditions in the [ direction. 

We define a finite Fourier integral transform 

4%~ v,) = 
s 

; K(v,, i’M(rl, i’)di’ (20) 

with inversion formula 

4(& i) = f K(v., i)@L VA. (21) 
“=O 

The appropriate kernel, K(v,, (J, for the finite Fourier 
transform is the normalized eigenfunction of the auxili- 
ary homogeneous eigenvalue problem (i.e. the problem 
in which ql(q) and q2(q) = 0 for -cc < YI < +co) 
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where v, is the appropriate eigenvalue [lo]. For the Applying the Fourier transformation (equation (27)) 
present problem, the appropriate kernel is to equation (25) and using the transformed boundary 

K(v,, ;) = 2’12 
v,cosv,<+B1sinv,< condition (equation (26)) yields 

[(v~+B:)(v~~~~~~i!+B~~~2 (22) - $XB2B(B, V”) + &Vi(B> v,) - vn”Bca. v,) + & 

and the eigenvalues are the positive roots of ([ lo], p. 50) 
m 

tan ,,, = rn(Br fB2) 
X 

s 

[K(v,, l)qz(l) +K(v,. 0)4,(I)] eiBidl = 0. (29) 

v,2 -BIB2 
(23) mm 

The integral transformation, equation (20) is applied It is assumed that the total heat input is finite so that 

to the differential equation, equation (16) yielding the integral exists and is bounded. 

d’$(r> v,) d4 

‘[’ dq 

Solving equation (29) for &fl, v,) yields 

7 -F (% V”) 
I 

J(P> V”) = 
s’(B) 

j 

1 
Ktv ;,) ~2~h> i’)X’ WxB2 - i$B + VI, - 

(30) 

+ nr = 0. (24) 
0 

,c2 

where 
The integral term in equation (24) may be evaluated 

by integrating by parts twice. Performing the necessary g(1) = K(v,, lk2W + m”,O)ql(ll) (31) 

algebra and utilizing equations (17) (18), (22) and (23) 
yields the following ordinary differential equation 

and the Fourier transformation, #, of g is defined by 
equation (27). 

d2B(q, v,) d$ 

*LX dq 
2 - & (C VII) 1 - v.‘B(l?, v,) 

Applying equation (28) the inversion formula, to 
equation (30) yields 

fK(V”> l)q2h)+K(vn,Oh(r?) = 0 (25) 

with transformed boundarv conditions &L v,) = (2n)-“2 j” .?@)s’(D)e-‘@*dB, (32) 

We define a Fourier integral transform 

&a, V”) = & l/2 jm 

Jf(B)- 1 

&II’, v,) eipV’ dq’. (27) 
*xp* - i+/3 + v,” 

-a: 

With inversion formula 
Applying the convolution theorem [ 111, 

to equation (32) yields 

&a, V”) = (2nY 1’2 
j 

m [CL> l)q&.) + K(v,, Wd4lf(~ -4di. (35) 
-m 

Applying the finite Fourier transformation inversion formula, equation (21) and equation (22) yields 

(v,cos~,~+B~sinv,) 
j 

Cc [( v,cosv,+B,sinvn)q2(~)+v,ql(~)]f(~-~)d/Z 
-m 

I 

(36) 

f(n), which by the inversion formula, equation (28) and equation (33) is 

(37) 

is evaluated by integrating along a hemicircular contour in the complex plane using the residue theorem and 
noting that the two simple poles are located on the imaginary axis. 
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The solution for the temperature is 

2 m 
@(VT i) = F “Z1 

(v,cosv,[+B, sinv,[) 
s 

cc cc v,co~v,+B~sinv,)q,(l)+v,q~(l)]exp 
-cc 

X 

(1+4~~:/$)~~‘+$ 1 di 

1 
(38) 

(l+4xv,2/tiP2 

where v, is defined by equation (23). 

SOLUTION NEGLECTING CONDUCTION 

When the dimensional velocity becomes sufficiently large, conduction in the q direction becomes insignificant 
compared to convection. The dimensionless variable which determines this condition is x. A primary purpose 
of this work is to determine the maximum value of 1 for which conduction can be neglected. The form of 
the solution for x--+0 can be derived either by evaluating the limit of equation (38) or by transforming 
equation (25) to the Lagrangian coordinate system and utilizing Laplace transforms ([ll], pp. 29-30) and the 
Faltung Theorem ([ll], p. 31). The result is: 

a, (v,cos~,i+B~sinv.i) 
J 

-[( v.cosv,+B1 sinv,)q2(l')+v,ql(l')] 

+(T, i) = 2 c 
0 

exp[ - vi(t-l’)dA’, (39) 
n=l 1 

where T = 0 is chosen such that ql(z) = 0 for 5 < 0. Equation (39) is a general solution to several specific 
transient problems whose solutions are given in ([2], numerous examples such as 3.11 iv, p. 125). 

One advantage of doing a complete derivation starting from the differential equation [equation (13)] with 
the Lagrangian form of the total derivative is to demonstrate that equation (39) has broad validity. If the 
conduction/convection parameter, x, is negligibly small, then the Lagrangian form of the differential equation 
is the usual one-dimensional transient heat-conduction equation independent of whether the velocity is constant 
or time dependent. Thus, equation (39) is valid for variable, but large (see the definition of x) velocity. 

APPLICATION OF MODEL TO SQUARE-PULSE HEAT SOURCE 

In order to study the above model in greater detail, the model is now specialized to a specific problem of 
practical interest; namely, a process which involves convective cooling top and bottom and a square-pulse heat 
source of length 1 on the upper surface. Mathematically, the boundary conditions for this model are 

41(V) = 0; -cO<q<cO (40) 

42(V) = 0; V < 0, rl> 1 (41) 

%(V) = 1; O<q<l. (42) 

Substitution of these boundary conditions ir.to equation (38) and evaluation of the resulting integrals yields the 
temperature distribution 

(v,cosv.+B~ sinv,)(v.cos v,[+Bl sinv,[) 

X 

--$[(1+4~v~/$3~‘~- l] 111 exp $ [( 1 + 4~v,Z/$)“~ - l] - 1 

1 (1+4Xv.2/~)“2[(1+4Xv.2/~)1’2-l] 

? ’ 1 (43) 
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(VnCoSVn+B~ sinv,Hv,cos v.i+Bl sin v,i)exp 
X 

$ [(1+4~v,‘/11/)l’~+ l] 

1 (1+4xv9/~)/)“~[(1+4~v,Z/11/)“*+ l] 

(V,COS v,+ B, sin v,)(v,cos v,i + B1 sin v,[) 

(vi -I-B: + B,) + B1 1 v,2(1 +~xv:/I~)~” 

[( I+ 4p,'/$)"* + l] exp 2 [( 1 + 4xv,Z/$)“* - l] 

+ [(1+4~v,z/~)“* ~[(l+4&,h)1~2+l] -2(1+4~v,f/1(1)~‘~ , 

EVALUATION OF EXACT SOLUTION 

9 < 0 (44) 

0 <r? < 1 (45) 

In order to use the analytical solution [equations (43-45)], a computer program has been written which 
computes the eigenvalues [equation (23)] and then evaluates the summations in the analytical solution. The 
eigenvalues are computed using Muller’s iteration scheme of successive bisection and inverse parabolic 
interpolation [ 121. The details of the procedure are discussed in the appendix. 

For certain cases this series solution converges extremely slowly, requiring considerably more computer time 
than numerical techniques such as finite difference or finite element. 

In the regions q <: 0 and q z 1 the exponential coefficients insure that as IqI+ co the succeeding sinusoidal 
terms in equations (43-44) rapidly go to zero. In the range 0 < v < 1 as [ + 1 the terms in the summation 
of equation (45) are not of alternating sign resulting in slow monotonic convergence. For the example of 
x = 00003506, tj = 4.5633, B1 = 0.0367, and B2 = 94.401, the summation of the first 9600 terms at q = 0.8, [ = 1 
is over 0.2 per cent from the limiting value. Figure 2 illustrates convergence of the series for this example 
problem at q = 0.8. The figure presents temperature distributions in the [ direction which were calculated 
by truncating the series of equation (45) after 100, 200, 400, 1000 and 2000 terms. The series was evaluated at < 
increment of 001 and the points connected by straight lines. The results for the present example indicate that 
convergence is obtained for [ < 099 using 200 terms. However, to obtain convergence at [ = 1, 2000 terms 
are barely sufficient. The behavior is particularly disturbing since the temperature of greatest interest is the 
surface temperature. 

II 

IO 
R 
0 - 
x 

ci . 

$ 

Yg9 

FIG. 2. Dimensionless temperature distribution across slab 
as a function of the number of terms in the summation. 
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Convergence can be improved for [ = 1, 0 < r] < 1, by determining the partial sum of the terms for n > N 
where N is an arbitrary, large number. For c = 1, using the definition of the eigenvalue, equation (23) and 
equation (45) the partial sum can be written as 

x [(1+4Xv,2/tj)“2+1]exp --~[(1+4~~~/~)~~‘--1] 
[ 1 

+ [(l + 4xv,z/$)“* - 1 -2(1+4&$)“* (46) 

N is chosen so that 

vN >> B, 

vN >> B2 

(47) 

vN >> w 
E ’ 

where E is an arbitrary small number. 
For the range E < rl< 1 --E dropping terms which 

because of the choice of N are of higher order, 
equation (46) becomes 

For large n, since v, g nn and COST g I, 

The summation can be approximated by 

[I31. 

(49) 

an integral 

(48) 

thus, 

A&-& for .s<n<l---E. (51) 

In a similar manner it can be shown that 

A4N = --& for n = 0 or 1. (52) 

Figure 3 illustrates for the example problem the 
percent error for the truncated summation and trunc- 
ated summation plus integrated remainder as a function 
of the logarithm of the number of terms. Adding the 
integrated remainder to the truncatedsolution dramati- 
cally improves convergence. One hundred and fifty 
terms plus remainder provide as good a prediction as 
10 000 terms without the remainder. 

9: 

6: 

7: 

10’ 

Number of terms. N 

FIG. 3. Percent error of truncated summation and truncated 
plus remainder summation. 

APPROXIMATE SOLUTION FOR SQUARE-PULSE 
HEAT SOURCE 

Since the exact solution frequently does not converge 
rapidly, it is useful to obtain an approximate solution 
to the above problem which can be used for rapid 
calculations. As will be shown later, the approximate 
solution under certain circumstances reduces to the 
exact solution truncated after the first term. 

The approximate solution is derived using an integral 
technique which allows the choice of function to 
represent the y dependency of temperature. A linear 
function has been chosen because it provides a realistic 
approximation to the exact profile for two cases of 
interest: (1) the isothermal distribution which occurs 
when B1 << 1 and B2 c 1, (2) the linear distribution 
which occurs when there is a heat sink at y = 0 such 
that B1 >> 1. The linear function is not a good choice 
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for the case of an adiabatic surface at y = 0 
(Bz > 1, Bi = 0); an obvious choice would be a para- 
bolic distribution. 

The approximate model is most readily developed 

in an Eulerian coordinate system in terms of the real 
variables. One performs an energy balance on a differ- 
ential segment of the slab equating the increase in 

internal energy with the net heat flux to the differential 
volume. 

+7-T,) = 0; x < 0, x > I (53) 

+-.I;,); O<x<l (54) 

T,(x) is the temperature at y = 0, Y&(x) is the tempera- 
ture at y = w, and T. is the average temperature of the 
slab. For the assumed linear distribution 

W, Y) = T,(x) + [G(x) - T,(x)1 ; > (55) 

T,(x) + T,(x) 
T,(x) = 2 

A relationship between T,(x) and 7”(x) is obtained 
by requiring T to satisfy the differential boundary con- 
dition at one of the surfaces. The boundary condition 
on the lower surface is chosen [equation (2)] in order 
to accurately model the case of a heat sink on this 
surface (B, >> 1). In terms of the present problem with 

its assumed linear distribution, equation (2) becomes 

k (G-C) 
,--/Q(T,-T,)=O; 

W 
y = 0, -00 <x < co. (57) 

Substituting equations (56) and (57) into (53) and (54) 
integrating the three differential equations, and apply- 
ing the appropriate six boundary conditions yields in 
terms of dimensionless variables* 

M2 1 -exp(-MI) 
WV) = - %nax - 

MI 1 - evWf2r?,,J 
ev(Wrl), 

v < 0, (58) 

W’(q) = 
1 -4max[evW2v) - 2 evMh - I))1 

I- evOf2bd 

O<r?Gl, (59) 

*The variable CD is used to denote the dimensionless tem- 
perature in the approximate solution, C#I is reserved to denote 
the exact solution. 

@%I = rlmax 
[l -ewW2)1 exp(M2(v- 1)) ~ , 1. (60) 

1 --ex~W2~,,,) ’ ’ 
where 

2 Br +B2+&& 
/l- 

$ 2fBr ’ 
(61) 

M2 =~[1-(1+4p%)“‘]. (63) 

Ml 1+(1+4/L~)“2 
rmax = ~ = 

Mi-W 2( 1 + 41*#‘2 
(65) 

qrnax is the value of rl at which the temperature, 

equation (59) is a maximum. For x = 0 the maximum 
value of dimensionless temperature will occur at rl = 1 
while for no motion of the slab (x + co, tj = 0) the 

maximum will occur at r~ = 4. Thus, for all x the point 
of maximum temperature, qrnax, will be in the range 

0.5 G Qnax . < 1.0. The dimensionless temperature vari- 

able has been redefined in equation (64) so that it is 
independent of [ and scaled so that its maximum value 
at rl = rjmax is unity. 

The above solution can be further simplified when 
4px CC 1. Applying this inequality to equations (58-60) 

yields 

O”(V) = 0, ‘I < 0 (66) 
lim4fi~-O 

,i~;;~)o = 
l-ev-~7) 

l-exp(-p) ' 
O<rl<l (67) 

+ 

@,"(a) = exp [I-Arl- I)], 7 > 1. (68) 
lim4pz-0 

This limiting solution represents the appropriate 
solution for negligible conduction and is independent 
of x. For small px and the assumed linear profile, there 
is no preheating by conduction for g < 0, and the 
thermal process consists of an exponential heating 
process from 0 < rl < 1 with a thermal time constant 

of l/p followed by exponential cooling with the same 
time constant. Thus, the parameter p is a reciprocal 
thermal time constant or energy storage parameter. 
Since p equals a function of the Biot numbers divided 

by the dimensionless velocity II/, it can also be con- 
sidered a reciprocal velocity. 

The above discussion suggests that the important 
parameter in addition to x which characterizes the 
renormalized dimensionless temperature distribution 
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@‘(a 4) is the energy storage parameter p. It readily 
can be shown that 

B1 f&$B1& 
P = 

$ 
= v:/lj. (69) 

IimB, -O.&-r0 

Thus for small Biot number processes the appropriate 
solution is equivalent to the exact solution truncated 
after the first term except that the cosine and sine 

functions in the < direction have been replaced by a 
linear function. 

RESULTS FOR A SQUARE-PULSE HEAT SOURCE 

A series of parametric graphs have been prepared 
to aid in interpreting important physical regimes of 

the model. Although the results are based on the exact 

solution, the modified dimensionless temperature 4” 

has been found to be more appropriate for presenting 
the results. 

We first study the dependency of the temperature 
distribution at the heated surface on the conduction/ 

convection parameter. Figure 4 graphs a”(?, 1) vs q for 

-0.5 0.0 0.5 1.0 I.5 

FIG. 4. Temperature distribution on heated surface: 
$ = 1O-3 (p = loo), B1 = 0, Bz = 0.1. 

various values of x from 10’ to 10e3. The value of 
the remaining parameters are B1 = 0, Bz = 0.1, and 

II/ = 10e3(p = 100); the values of B1 and Bz were 
arbitrarily selected as being typical of many manu- 
facturing processes. For x < lo-’ there is no preheating 
prior to q = 0; hence, conduction is negligible. The 
symmetric temperature distributions with significant 
preheating for I= 10 and lo2 represent cases with 
negligible effect from part convection. 

Figures 5-6 are similar to Fig. 4 except that the Fro. 6. Temperature distribution on heated surface: 
parameter + is increased two decades for each succeed- $ = 10 (p = O.Ol), B, = 0, B2 = 0.1. 

ing figure (/.J is decreased two decades). On all figures 
we note that for x < lo-’ there is no preheating due 
to conduction. We also note that the temperature 

distribution for the 1 = 10m2 and 1O-3 case are 
identical and hence, for x < 10m2 the distributions are 
independent of x. The solution for x = 10m3 changes 
gradually from a symmetric square-pulse to an expo- 

nential rise followed by an exponential decay as 
increases from 10m3 to 10. 

I.6 

o.ti 
-0.5 0.0 0.5 1.0 1.5 2.0 

FIG. 5. Temperature distribution on heated surface: 
$ = 10-l (p = 1). B1 = 0, B2 = 0.1. 

2.4 
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1.6 
1 

FIG. 7. Temperature distribution across part: (I- = lo-“’ FIG. 9. Temperature distribution across part: $ = 10 
(Al = 100). B1 = 0, I32 = 0.1. (/l = O.Ol), I31 = 0, i?Z = 0.1. 

0.0 c 1 - / ’ 
0.0 0.2 0.4 
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FIG. 8. Temperature distribution across part: I#J = 10-l 
(/4 = I), B, = 0, Bz = 0.1. 

Figures 7-9 are similar to Figs. 4-6 except that they 
plot the temperature dist~bution at nmax as a function 
of the coordinate 4. The figures are again for B1 = 0 
and Bz = 0.1. Figure 7 is for II/ = 10-3(p = 100) and 
shows that ~~(~~~, c) is inde~ndent of 5 for x c 10. 
Figures 8 and 9 show that as $ increases #Y(rfmax, if 

s2*5 

: 
E 
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becomes a strong function of [. This functional depen- 
dency on < indicates that there is insufficient time for 
the effect of the heat source to diffuse through the part 
in the < direction in spite of the low Biot numbers which 
for Newtonian cooling would insure an isothermal 
part [14]. 

The preceding figures have presented q and i tem- 
perature distributions for various values of the par- 
ameters 2 and $. It was shown that conduction in the 
direction of motion had a negligible effect on the 
on the surface temperature distributions when 
x < 10F2. Figure 10 presents a quantitative analysis 
for determining when conduction in the x direction 
can be neglected for a wide range of p, Bt and B2 values. 
An arbitrary criterion for neglecting conduction is that 

cp”( -O~OLlYcp”(s,,,, 1) < O-05. The criterion states 
that the surface temperature rise immediately preceding 
the heat zone should be less than 5 per cent of the 
surface temperature at g,,,. The point (0,l) is not 
chosen since the heat flux is singular at this point. 
Curves were generated using Muller’s iteration scheme 
[ 121 to determine those values of x which satisfied the 
5 per cent error criteria. These curves are plotted in 
Fig. 10 as a function /* and x for the five cases 
gi=o,gz=0.1; B,=O,BZ=l; B1=0.1,&=0; 
B1 = l-0, IS2 = 0; and Br = 10, Bz = 0. They are the 
vertica1 lines slightly to the right of x = 10V2. The 
minor bends in the curves may be caused by using 

#n&IiC¶X~ l), the exact temperature at the approximate 
m~imum, rather than the actual ma~mum surface 
temperature. The results demonstrate that conduction 
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conduction for x < 0.75 x lo-‘. Ling and Yang [6] in 

their paper discuss the effect of conduction on the 

heated surface temperature distribution. They state 

without supporting calculations that neglecting con- 

duction has been shown to accurate for 1 < O.l(2a/l) 
where a is an undefined reference length. They present 
a specific example problem involving a heat source 
with parabolic distribution for which x = 1.1 x 10m3. 
Thus, the present analysis supports Ling and Yang’s 

Gmducfion- 
conclusion that conduction is unimportant for their 
example problem, but it does not corroborate their 

general criterion with its undefined parameter a. 

VALIDITY OF APPROXIMATE SOLUTION 

\a-’ L- 
10-a 1 o-1 

FIG. 10. Regions of negligible conduction and negligible 
convection. 

in the direction of motion can be neglected for x < lo-’ 

independent of the values of the other parameters, 

p, B1 and Bz. 

The preceding section has presented temperature 
distributions for a limited number of values of the 

parameters ;I/, B1 and Bt. It is impossible to present 
graphical results for all of the cases which may be of 
interest, therefore, the reader may need to calculate 

temperature distributions for examples not covered in 
the predecing section. The approximate solution is 

most appropriate for these calculations since it is 
readily evaluated on a pocket calculator while the 
exact solution requires lengthy summations on a digital 
computer. The purpose of this section is to illustrate 
the zone of validity for the approximate solution. 

A second series of curves on Fig. 10 show when 

convection due to part motion can be neglected. 
When convection is negligible, the temperature dis- 
tribution in the part is symmetric, and, therefore, 

#‘(0.5 -Q <) = #‘(0.5 + q, [). The criterion chosen to 
evaluate negligible convection is for the percent differ- 
ence between the surface temperature at the end and 
beginning of the heater to be less than five per cent, 

or [V’( 1,1) - #‘(O, l)]/@‘( 1,1) < 005. These curves 
again were generated using Muller’s iteration scheme 
[ 121 and are the family of vertical lines which approach 
1 = 10 as p --t 0. It is apparent from Fig. 10 that x is 
also the unique dimensionless parameter which deter- 

mines when convection can be neglected. For x > 10 
convection is always negligible and only conduction 
must be considered. Only for lo-’ < x < 10 must both 

conduction and convection be considered. 
This author is unaware of any prior work presenting 

a criterion for neglecting part convection for quasi- 
stationary problems; however, in at least two other 
papers the authors have considered the question of 
criterion for neglecting conduction [6,7]. Friedman 
and Lenz [7] consider a slab problem with prescribed 
temperature distributions on the two surfaces. For this 
very specific problem, the authors calculate a criterion 
for neglecting conduction. In terms of the notation of 
the present paper, they conclude that they can neglect 

Comparison of exact surface temperature distri- 

butions with the approximate solutions in Figs. 4-6 
shows that when the approximate solution predicts 

~“(rllll~X> 1) it provides a good prediction of the entire 

surface temperature distribution. Because of the re- 
normalization of the dimensionless temperature, the ap- 
proximate solution always predicts that @“(qmax, 1) = 1. 
One can examine Figs. 4-6 and determine for which 
cases the approximate solution is not valid. This 
technique is subjective and only a limited number of 

cases have been presented. Figure 11 is an objective 
presentation for a large number of cases. The criterion 

selected for determining the validity of the approximate 
solution is that the exact and approximate value for 

dJ”(%ll&?x> 1) differ by 5 per cent or less. Curves satisfying 
this criterion were generated using Muller’s iteration 

scheme [ 171. The results are presented as functions of 
q and x with B1 and Bz as parameters. There are pairs 

of curves, one with Bz = 0 and B1 = B, the other with 
B1 = 0 and B2 = B, where B = 10-3, lo-‘, 10-l 1 1 > 
10 and 100. If the parameter coordinates for a process 
place it to the upper left of the appropriate B curve, 
an approximate solution can be used to predict the 
maximum surface temperature within 5 per cent. 

There are also two parametric curves on Fig. 11 for 

rl max. These curves are straight lines with a slope of - 1 

on the logarithmic coordinates of Fig. 11. Consider first 

the G,.~ = 0.52 line. qrnax + 0.5 implies a symmetric 

temperature distribution and consequently no convec- 
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tion. Thus, qrnax < 0.52 can be used as a criteria for 
neglecting convection in the approximate solution. 
Comparison with Fig. IO reveals that this criterion is 
consistent with the results for the exact solution. Note 

that to the upper right of this line all of the tem- 
perature error curves have a slope of + 1 indicating 
that for this region the zone of validity of the approxi- 
mate solution is independent of p(/x or velocity as 

expected. qrnax + 1 or 4px + 0 implies no conduction. 

Thus, to the left of the PI,,, = 0.98& = 0.0213) line 
and above the appropriate B curve, equations (66-68) 
can be used to predict the temperature distribution. 
The horizontal B curves for Q,,~~ > 0.98 indicate that 
the zone of validity of the approximate solution is 

essentially independent of the conduction parameter x. 
The triangular region px >, 0.0213, ): < 10e2 at the 

upper left to Fig. 11 is a region for which conduction 
is negligible; but since px > 0.0213 the limiting form 
of the approximate solution has not been shown to be 
valid. Comparison of the general and limiting form of 
the approximate solution shows that for this region 
they are identical except in a small neighborhood of 

q=Oand 1. 
The range of validity of the approximate solution 

can be estimated for other values of B, and B2 by 

calculating an effective Biot number, B,, = 2(Bi + B2 + 
B1 B,)/(2+ B,). The calculated B, is then used with the 
effective Biot numbers shown on Fig. 11. This technique 

FIG. 11. Zone of validity of approximate solution for 
predicting #‘(q,,,. 1). 
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will give a conservative estimate of the range of validity 
of the approximate solution. 

We next determine the region for which the approxi- 
mate solution predicts the temperature distribution 

across the part at q = qrnax. The approximate solution 
predicts that @“(u,,,, <) = 1; however, since @ is a 
linear function of < when Q” is constant, the region of 
validity for the approximate solution is not limited 
to negligible temperature gradients in <. In particular 

if the heated slab rests on a heat sink such that h1 + c;c: 

and hence B1 >> 1 then the actual temperature distri- 
bution will be essentially linear in the slab, the trans- 
formed dimensionless temperature, @“, will be constant, 
and the approximate solution, CD”, will accurately 

model the linear temperature distribution across 

the slab. The approximate solution predicts that 

@,“(Vlll,X> 1) = @“(&lax. 0) = 1, whereasas shown by Figs. 

779 4”(%nax, 1) > 1 and +“(G,,~~, 0) < 1 because of the 
finite rate of diffusion in the < direction. Consequently, 
a valid criteria for determining the zone of validity 
of the approximate solution is r$“(t~,,,, 1) - ~$“(Q,,~~,O) = 

0.05. 
Figure 12 presents curves satisfying this criteria. As 

in Fig. 11, they are plotted as a function of p and x 

with B1 and B2 as parameters. Again, curves are shown 

for qmax as a function of p and x and the previous 

comments apply. The results are very similar to the 

previous figure except for B1 = 0. B2 > 1. For these 

10%' 
I 

IO-’ 10-a IO-’ 100 101 I 0’ 

x 

FIG. 12. Zone of negligible gradient for +“(qmaxr 5). 



cases, the range of negligible gradient is a strong 
function of Bz, rapidly becoming smaller with in- 
creasing Bz. Hence, the approximate solution has only 
a small range of usefulness for B2 > 1. For these cases 
the temperature distribution would be better approxi- 
mated by a parabolic distribution with zero gradient 
at ( = 0. Conversely, for B1 > 1, Bz = 0 the range of 
negligible gradient becomes essentially independent of 
Br. The large heat sink on the bottom surface produces 
a temperature profile linear in [. 

4. R. G. Watts, Temperature distributions in solid and 
hollow cylinders due to a moving circumferential ring 
heat source, J. Heat Transfer 91,465-470 (1969). 

5. N. R. DesRuisseaux and R. D. Zerkle, Temperatures in 
semi-infinite and cylindrical bodies subjected to moving 
heat sources and surface cooling, J. Heat Transfer 92, 
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SUMMARY 

The present work has determined the temperature 
distribution in a two-dimensional quasi-stationary slab 
subjected to distributed heat sources and convective 
losses on both surfaces. Temperature distributions have 
been presented for the case of a square-pulse heat 
source on one surface with convective losses on both 
surfaces. Detailed analysis of this case has shown that 
conduction in the direction of motion has a negligible 
effect on energy transport for x < Dol. Conversely, for 
x > 10 convection due to part motion is negligible. 
Consequently, for x < 0.01 the quasi-stationary two- 
dimensional problem reduces to transient one-dimen- 
sional conduction; whereas for x > 10 it becomes 
steady-state two-dimensional conduction. 

Since numerical evaluation of the exact solution 
frequently requires extensive calculations, an approxi- 
mate solution has been presented which can be evalu- 
ated readily on a pocket calculator. Figures are 
presented which delineate the zone of validity of this 
approximate solution as a function of the parameters 
of the system. 
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DISTRIBUTION BIDIMENSIONNELLE ET QUASISTATIONNAIRE DE TEMPERATURE 
DANS UNE PLAQUE MOBILE INFINIE A PROPRIETES ORTHOTROPES 

RCumk-On prCsente une solution analytique d’un problZIme avec des conditions aux limites correspon- 
dant a une distribution de flux thermique et g une perte par convection. On considbre en d&ail le cas 
d’une source de chaleur & signal carri sur une face avec des pertes convectives sur les deux faces; 
des distributions de temptrature sont prksenttes pour un nombre limit& d’exemples et une solution 
approchee est form&&e. Le paramttre conduction/convection, x = r/(VI) fournit un critbre pour n6gliger 
le transport d’tnergie dti a la convection dans la direction du mouvement. Pour x < O,Ol, seule la 
convection est importante. Pour 0,Ol < x < 10, la conduction et la convection sont toutes deux 

importantes. La conduction est prCpondCrante pour 10 < x. 

ZWEIDIMENSIONALE QUASI-STATIONARE TEMPERATURVERTEILUNG IN EINEM 
BEWEGLICHEN, UNENDLICH LANGEN STAB MIT ORTHOTROPEN EIGENSCHAFTEN 

Zusammenfassung-Es wird eine analytische Liisung des oben genannten Problems mit verteilten 
WPrmestromdichten und Konvektionsverlusten als Randbedingungen an der Oberfllche entwickelt. 
Der Fall einer gleichverteilten Wlrmestromdichte auf einer Oberfllche mit Konvektionsverlusten auf 
beiden Oberfllchen wird detailliert untersucht; fir eine beschrlnkte Zahl von Beispielen werden die 
Temperaturverteilungen wiedergegeben und eine NLherungsliisung abgeleitet. Der Faktor Wlrmeleitung/ 
Konvektion x = ~((1/1) ist ein Kriterium dafi.ir, ob der Energietransport durch WLrmeleitung oder 
Konvektion in Bewegungsrichtung VernachlCssigt werden kann. Fiir x < 0,Ol ist nur die Konvektion von 
Bedeutung. Fiir 0,Ol < x < 10 spielen Wkrmeleitung und Konvektion eine Rolle. FLir 10 < ,y ist nur 

noch die WIrmeleitung wichtig. 

ABYMEPHOE KBA3kiCTAuHOHAPHOE PACI-IPEAEJIEHME TEMI-IEPATYPbI B 
AB&DKYuEfiCX GECKOHEYHOti l-UNITE C OPTOTPOIIHbIMM XAPAKTEPMCTMKAMM 

AmoTawn- Paspa6oraHoaHanaTArecKoeperueHuesanaYannRnByMepHoro KBa3WCTaUWOHapHOrO 

pacnpenenema TemepaTypbI B nsmycyIlletic5I 6eCKOHeqHOk ImiTe c 0pToTponHbIm xapaKTepacTH- 

K~~~H.~~~~~II~I~~C~OBI~RI~~IIOB~~XHOCTI~~~~~E~T~~I BBw~~ pacnpeneneHHor0 TennoBoronOTOKa 

UKOHBeKTEiBHbIX IIOTepb. ~OApO6HO paCCMaTpHBaeTCRCny'Iafi CKBWpaTHblM HMIIynbCHblM TeITJIO- 

BbIM WCTO'IHLIKOM Ha OnHO& IIOBepXHOCTH II KOHBeKTIiBHblMH IIOTepSlMH Ha o6esx IIOBepXHOCTRX, 

pacnpenenemfl TeMnepaTypbI II~I~B~~RTCR nn.nR orpam~eHHor0 wcna cnyraeB, A BbIBonHTc5I npw 

6nHmeHHoe PeUIeHIie. nOKa3aH0, 'IT0 KOHAyKTIiBHO-KOHBeKTHBHblti IIapaMeTp x= m/(v/) DaeT 

KpIiTepHH, Gnaronapn KOTOPblM MOXCHO IIPeHe6PeraTb IIepeHOCOM 3HeprHH, Bbl3BaHHblM TellnO- 

IIpOBOAHOCTbIOIinLiKOHBeKUAekBHaIIpaBJIeHEiEiABEi~eHH~.&IR X$0,01 BamHaTOnbKOKOHBeKUWI, 

JIJISI O,ol<X<lO BaxHbI KaK TeIInOIIpOBOAHOCTb, TaK H KOHBeKUAII, a LlJIR lO<x - TOnbKO 

TeIInOIIpOBOAHOCTb. 


